
An Extension of Pathfinding Algorithms for
Randomly Determined Speeds
Visvam K. Rajesh

Student
Hunterdon Central Regional High School

Flemington, NJ USA
vrajesh@hcrhs.org

Chase Q. Wu
Department of Computer Science
New Jersey Institute of Technology

Newark, NJ USA
chase.wu@njit.edu

Abstract—Pathfinding is the search of an optimal path between
two points on a graph. This paper investigates the performance of
pathfinding algorithms within 3D voxel environments, focusing on
optimizing paths for both time and distance. Utilizing computer
simulations in Unreal Engine 5, four algorithms – A*, Dijkstra’s
algorithm, Dijkstra’s algorithm with speed consideration, and a
novel adaptation referred to as Time* – are tested across various
environment sizes. Results indicate that while Time* exhibits a
longer execution time than A*, it significantly outperforms all
other algorithms in traversal time optimization. Despite slightly
longer path lengths, Time* is able to compute more efficient
paths. Statistical analysis of the results suggests consistent
performance of Time* across trials. Implications highlight the
significance of speed-based pathfinding algorithms in practical
applications and suggest further research into optimizing algo-
rithms for variable speed environments.

Index Terms—Pathfinding, Dijkstra’s Algorithm, A*, Voxel

I. INTRODUCTION

In pathfinding scenarios, the world is often represented as
a 2-dimensional graph, in which an agent traverses across
nodes connected by edges. This concept of representing en-
vironments as graphs is known as graph theory [1]. Common
pathfinding algorithms find the best path between two nodes
by optimizing the distances between nodes (represented by
weights on each edge between the nodes) [13]. Previous
studies have attempted to address various areas in regards
to pathfinding such as environmental representation, com-
putational optimization, and heuristic approaches. When it
comes to evaluating the efficacy of various algorithms, three
factors are commonly considered, i.e., path cost, memory
consumption (the required amount of memory to find a path),
and execution time (total time for an algorithm to find a
path) [16].

Many studies have used the graph theory model to represent
the world but have also taken into consideration the voxel
model. This model discretizes 3D space into cubic “voxels”,
of which each one’s center acts as the location of the node in
the graph. This model allows for more dynamic representation
of 3D space and acts as a reduction from a more complex
environment into a much simpler one, allowing for expanded
processing capabilities.

In this study, we investigate a pathfinding problem with
regard to traversal time, in which the speed across nodes in the

environment is subject to dynamic changes over time. We aim
to optimize traversal time due to its application in real-world
scenarios and its relevance to the factor of speed. Due to the
nondeterministic nature of this problem, there does not exist
a polynomial-time optimal solution to solve such a problem.
As such, a heuristic approach is required to create an effective
solution in polynomial time.

We propose a heuristic approach to solve this problem by
taking into consideration the Euclidean distance from the goal
and the mean randomly determined speed from the goal. In
this study, we explore the efficacy of traversal time as a metric
and a heuristic cost function in 3D voxel space.

The contributions of our research are summarized as
follows:

• a rigorous formulation of a constrained pathfinding prob-
lem with time-varying speeds;

• design of a pathfinding algorithm adapted from A* in 3D
voxel space; and

• superior performance over existing approaches through
extensive experiments.

II. RELATED WORK

We conduct a brief survey of work related to pathfinding in
various environments.

A. Advancement of Pathfinding

The origin of most modern pathfinding algorithms comes
from Dijkstra’s algorithm. In this algorithm, all nodes in a
graph are checked to calculate the distance between them
to find the path of minimum distance [8]. One famous use
of Dijkstra’s algorithm is in NASA’s Perseverance rover,
where it used the Enhanced Navigation (ENav) library. Their
variation of Dijkstra’s algorithm is called the Approximate
Clearance Evaluation (ACE) algorithm. The algorithm de-
velops a costmap by analyzing the terrain, where each cell
in the costmap has a cost of the weighted sum of tilt,
roughness, and minimum time needed to traverse a cell [2].
A common weakness of Dijkstra’s algorithm is the fact that
it cannot handle negative weights on edges. This led to the
development of the A* (“A-Star”) algorithm, one of the most
popular pathfinding algorithms that handles this weakness,
while improving upon the actual pathfinding performance. It



accomplishes this by using a heuristic to estimate the cost
from the start to the end of a path [28]. A* has been one
of the more popular adaptations of Dijkstra’s algorithm, used
by researchers worldwide. It has the advantage of analyzing
its surroundings before committing to a path. It accomplishes
this by using a heuristic function to calculate the cost of each
node, allowing the agent to rank the nodes around it [13]:

f(n) = g(n) + h(n), (1)

where function g represents the total cost between the current
node n and the starting node, function h represents the total
cost between the current node n and the ending node, and
function f represents the total cost of node n. This value
f(n) is calculated for each possible node around n and then
used to rank all of them to find the most effective path [13].
This allows for much quicker and more accurate pathfinding
as there is less backtracking necessary when calculating the
distance between two nodes [10]. The A* algorithm can be
adapted for multiple environments. For example, in [14], the
A* algorithm is modified for a sphere-shaped environment
by creating sphere-shaped borders around obstacles to stan-
dardize their pathfinding environment. They also modified the
algorithm to handle dynamic changes in environments, such as
new obstacles. The most common use of the A* algorithm and
its derivatives is in modern computer games. One example is
the video game Age of Empires, where military units move on
a 256 × 256 grid. The A* algorithm can be used to determine
the movement of military units. There are various avenues by
which A* can be expanded upon: the representation of the
environment, the heuristic function of the A* algorithm, the
use of memory by the A* algorithm, and the data structure by
which the information about the nodes is stored [6].

B. Voxel-Based Environments

Voxel-based environments operate on the voxel model, one
of the five fundamental ways of describing 3D environments
as described by [20]. Each voxel is a small cube of uniform
size. An advantage of the voxel model is its simplicity such
that the environment can be treated as an image with an
extra dimension. In images, each unit square is called a pixel,
whereas in these environments, each unit cube is called a
voxel. As the number of voxels increases, so does the quality
of the environment [11]. In [3], a virtual environment of a
12 × 12 array is considered with the perimeter being “solid”
and the inner portion having a random assortment of “solid”
cells, with all other cells being considered “empty”. This array
would be translated into a 3D maze, in which the agent would
use vision input to create a path through the maze, with each
of these cells being considered a voxel, as shown in Fig. 1.

Another example of voxel-based environments can be seen
in the video game Warframe, which has 44 publicly available
voxel-grid maps. These maps can be traversed using the A*
algorithm by considering each voxel as a node in the graph
used by A* [21]. A challenge brought by this is the ability
to move between height layers. The work in [26] overcame
this challenge by selecting all of the ground voxels, setting

Fig. 1. Movement of the animat through its environment after training as
illustrated in [3].

them up as the nodes in the graph, and setting the differences
in height as the weights of the edges. By viewing the voxel-
based environment in this manner, the A* heuristic can be
easily adapted to work in a 3D voxel space.

From a navigation perspective, a dilation is often performed
on a voxel environment to remove any obstacles to make
pathfinding easier. For example, this gets the navigable floor
space that is adapted into a graph for a pathfinding algorithm to
use [12]. This primary voxel model of a real-world space can
be accomplished using laser scans to form a point cloud [12],
allowing an agent trained for a virtual voxel environment to
work in real-world spaces as well. This method of using voxel-
based environments to accomplish real-time navigation in real-
world environments is used by [19] to navigate a humanoid
robot through a 3D environment. They used depth cameras to
form their voxel-based environment and the A* algorithm to
pathfind throughout it.

A major use of pathfinding in the real world is in Un-
manned Autonomous Vehicles (UAVs). “Crusher”, an un-
manned ground vehicle developed by [4], uses laser detection
and ranging (LADAR) analysis to analyze its surroundings and
build a voxel map. Another application of the voxel model is
quickly recording objects within an environment. For example,
[27] used the voxel model to identify vegetation within urban
environments and record the state of said vegetation. With the
variety of research on the voxel model, various avenues surface
that future studies should expand upon: map representations,
path techniques, grid techniques, etc. [5].

C. Problem and Gap

There is an empirical gap in the prior research due to
a lack of rigorous research within navigation in 3D voxel
environments. Previous research has addressed several aspects
of navigation, such as spherical environments [14], small 3D
mazes [3], and real-world terrain [4] [2]. Further research has
been conducted on video games, such as object recognition in
arcade games [18], and 3D voxel-based games like Warframe
[21]. Extending research into 3D voxel-based environments



would prove useful as the variability and simplicity of such
an environment would allow for more complex model building
for the real world [11].

In order to adapt to the constraints of the real world, it is
important to consider agent speed and traversal time. However,
the study done by [21] used the standard A* algorithm to
pathfind through voxel-based environments, failing to consider
the factor of agent speed. Thus, we include a random speed
component on every voxel within the environments used for
our study to simulate the various speed restrictions in the
real world. Under these conditions we raise the question, how
can graph-based pathfinding algorithms perform within a 3D
voxel-based virtual environment in which speed is randomly
determined? This study develops a heuristic to find the path
that minimizes time and distance, examining multiple node-
based algorithms–A* and Dijkstra–within voxel-based envi-
ronments, determining the navigational capabilities of such
models within a closed testing environment, and comparing
them against two adaptations considering speed and traversal
time.

III. PROBLEM FORMULATION

The environment for this research uses 3D voxel space to
represent a 3D environment on which an agent will traverse
upon. The agent may only traverse this space given certain
constraints, such as speed and terrain height. In this space,
each surface voxel is provided an x, y, and z coordinate where
the x, y coordinates represent horizontal movement and the z
coordinate represents terrain height and vertical movement.
Traversing upwards will slow the speed of the agent and
traversing downwards will increase the speed of the agent.

A. Environment

Given a graph G = (V,E) where there are n nodes and
m edges, and V = {v0, . . . , vn | v ∈ R3} is the nodes
representing the center of each voxel, where vn =

[ x
y
z

]
∀n and

E = {e0, . . . , en}. Each node vn has an associated randomly
determined speed returned by the function s(n) where n is
a given node, which randomly varies from 0.5 to 3.0 voxels
per millisecond. This range represents a realistic estimation of
speed limits where some routes may have lower speed restric-
tions than others. Each node will be represented by a voxel
in 3D space, where each voxel maintains the same size. As
such the edges connecting these nodes, connecting the center
of two adjacent voxels that share the same face, represent the
distance to traverse between nodes. When traversing across
nodes of different heights, s(n) × ∆z

10 is added to s(n) to
handle the factor of gravity when climbing up or down. The
constant of 10 was chosen arbitrarily to handle the variation
in real-world environments, forcing our solution to adapt to
varying conditions, and making it more robust.

B. Objectives

Given a starting node vs and a goal node vg in a 3D voxel
environment, we wish to compute the optimal path P from
vs to vg , which minimizes both the path length |P | and the

overall traversal time represented by the cost function C(P ),
i.e., min |P | and minC(P ). The cost function is calculated
as:

C(P ) =

n∑
i=1

(
s(i) +

(
s(i) ∗ ∆z

10

))
∗ d(i), (2)

where d(i) represents the Euclidean distance function, taking
the distance between i and i− 1:

C. Constraints

We aim to achieve the above objectives under the following
constraints: traversal may occur in 3 dimensions octally via
adjacent nodes, but the agent cannot traverse between nodes
if the difference in their z coordinates (∆z) is greater than 2.
This represents a difference in height too steep for any real-
world agent to traverse. A path P ⊂ V from vs to vg must
represent an open walk in the graph, meaning that vs ̸= vg .
Also, |P | ≤ |V |.

TABLE I
MATHEMATICAL NOTATIONS USED IN THE PROBLEM FORMULATION.

Notation Description
G = (V,E) Graph with node set V and edge set E

n Number of nodes
m Number of edges

vn =

xy
z

 Coordinates of node n

s(n) Speed associated with node n, varying from
0.5 to 3.0 voxels per millisecond

d(n) Euclidean distance between two nodes, n
and n − 1, represented by the equation,√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

∆z Difference in z coordinates between two
nodes, n and n− 1

P Path from vs (starting node) to vg (goal
node)

C(P ) Cost function representing the total traversal
time

IV. METHODOLOGY

To gauge the effectiveness of the algorithms in our study,
their performance must be measured by the time taken to reach
the goal node. This can be accomplished through experimen-
tation in computer simulation. Experimental research aims to
investigate cause-and-effect relationships. Within experimental
research design, we must consider many factors that may
influence a particular phenomenon [24]. An example would
be comparing a computer vision-based pathfinding algorithm
against an A* benchmark [7].

A. Our Approach

We propose to develop a heuristic function to optimize
traversal time, in which the time-varying speed is estimated
by taking the average speed between an adjacent node and the
current node (the “edge traversal time”) and the average speed
between the current node and the goal node (the “heuristic
traversal time”). We also consider the change in elevation
between two nodes in each speed calculation. We consider
four algorithms in this study: Dijkstra’s algorithm, due to its



primary influence in the pathfinding field, A*, due to its use
of heuristics when finding a path, along with two algorithms
that adapt A* and Dijkstra to consider time. These algorithms
are tested and evaluated via computer simulations, which
are able to quickly run multiple pathfinding scenarios within
short periods. During these simulations, the environment is
randomly varied across each trial to draw statistically meaning
conclusions about the performance.

B. Time*

In our solution, referred to as Time* (“Time-Star”), we
expand upon the A* heuristic function by including our
estimation of speed in cost calculations. Our new cost func-
tion takes into consideration the edge traversal time and the
heuristic traversal time to the goal node. For a given node n,
the cost function c(n) is represented as:

c(n) = c(n-1) + t(n-1, n) + h(n-1, n), (3)

where n-1 is the previous node within the path, t(n-1, n) is the
edge traversal time, and h(n-1, n) is the heuristic traversal time
to the goal node. These functions are represented respectively
as:

t(n1, n2) =
d(n1, n2)

e(n1, n2)
, (4)

h(n1, n2) =
d(n2, ngoal)

e(n1, n2)
, (5)

where d is the Euclidean distance between two nodes and
e is the speed of traversal between two given nodes. These
functions are represented respectively as follows:

d(n1, n2) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (6)

e(n1, n2) =
u(n1) + u(n2)

2
, (7)

where u(n) is a function to estimate the randomly determined
speed, represented as:

u(n) = s(n) +

(
s(n) ∗ ∆z

10

)
, (8)

where s(n) is the randomly determined speed of the given
node n, and ∆z is that node’s elevation change, calculated
by taking the difference between each node’s z coordinate.
By modifying the A* heuristic function to accommodate the
random speeds, the standard A* procedures are used to find a
path from start to finish.

The algorithm consists of two procedures, “Find Path” and
“Get Best Neighbor”. “Find Path” consists of an overall search
loop, which relies on “Get Best Neighbor” to calculate the
optimal node based on the constraints and cost function of the
algorithm. “Get Best Neighbor” searches all adjacent nodes
and uses the cost function as described to find the best node.
“Find Path” compiles these nodes into an array, which is
returned as the computed path.

Algorithm 1 Find Path Time*
1: procedure FINDPATH(Start, End, size, graph)
2: Path← [] ▷ Initialize an empty path
3: OpenList← graph ▷ Initialize OpenList with graph

nodes
4: CurrNode← Start ▷ Start with the starting node
5: Path.append(Start.Pos) ▷ Add starting position to

path
6: lastPoint← Path[Path.Num− 1]
7: PrevNode← OpenList[lastPoint]
8: while OpenList is not empty do
9: BestNode←

GETBESTNEIGHBOR(CurrNode, size,OpenList)
10: if BestNode ̸= nullptr then
11: OpenList.remove(BestNode.Pos)
12: if BestNode.Pos == End.Pos then
13: Path.append(End.Pos) ▷ Add end posi-

tion to path
14: break ▷ Path found, exit loop
15: PrevNode← CurrNode
16: Path.append(BestNode.Pos) ▷ Add best

node position to path
17: CurrNode← BestNode ▷ Update selected

node
18: else
19: if CurrNode is not an edge node then
20: currPoint← CurrNode.Pos
21: OpenList.add(PrevNode.Pos)
22: Path.remove(PrevNode.Pos)
23: PossiblePaths ←

All possible nodes around currPoint
24: for i← 0 to PossiblePaths.Num do
25: point← PossiblePaths[i]
26: if (point ̸= currPoint) and point

is not in Path then
27: if OpenList does not contain point

then
28: OpenList.add(point, graph[point])
29: OpenList[point].hasV isited←

false
30: CurrNode← PrevNode
31: PrevNode← graph[Path[Path.Num−

1]]
32: break ▷ Exit loop on failure
33: return Path ▷ Return the path



Algorithm 2 Get Best Neighbor Time*
1: procedure GETBESTNEIGHBOR(node, size, nodes)
2: MinX ← node.Pos.X
3: MaxX ← node.Pos.X + 1
4: MinY ← node.Pos.Y − 1
5: MaxY ← node.Pos.Y + 1
6: MaxZ ← node.Pos.Z + 2
7: BestNode← nullptr
8: if node.Pos.X < 0 or node.Pos.X ≥ size or

node.Pos.Y < 0 or node.Pos.Y ≥ size or
node.Pos.Z < 0 or node.Pos.Z ≥ size then

9: return NULL
10: for x←MinX to MaxX do
11: if x ≥ 0 then
12: for y ←MinY to MaxY do
13: if y ≥ 0 then
14: point← FV ector2D(x, y)
15: if point ̸= FV ector2D{node.Pos}

then
16: if nodes.Contains(point) then
17: if nodes[point].Pos.Z ≤

MaxZ and
not nodes[point].hasV isited

then
18: nodes[point].cost ←

COST(node, nodes[point])
19: if BestNode == nullptr

then
20: nodes[point].hasV isited←

true
21: BestNode←

nodes[point]
22: else if nodes[point].cost ≤

BestNode.cost then
23: nodes[point].hasV isited←

true
24: BestNode←

nodes[point]
25: return BestNode ▷ Return the best node

C. Dijkstra-Time

A more iterative approach is used for the Dijkstra-based
algorithm, called Dijkstra-Time, where there is no heuristic
function, instead identifying the best path via edge traversal
time t(n-1, n). Unlike the original Dijkstra’s algorithm, which
uses edge weights, Dijkstra-Time focuses on edge traversal
time. It then calculates distance iteratively and factors it in
place of a heuristic function. As it explores the graph, it
updates the tentative distance for each node based on the
traversal time. Since this algorithm factors in the traversal
time when determining the shortest path, it ensures that the
chosen path minimizes the traversal time. The following is
the pseudocode used for this adaptation.

Algorithm 3 Find Path Dijkstra-Time
1: procedure FINDPATH(Start, End, size, graph)
2: Path← [] ▷ Initialize an empty path
3: OpenList← graph ▷ Initialize OpenList with graph

nodes
4: CurrNode← Start ▷ Start with the starting node
5: Path.append(Start.Pos) ▷ Add starting position to

path
6: while OpenList is not empty do
7: BestNode←

GETBESTNEIGHBOR(CurrNode, size,OpenList)
8: if BestNode ̸= nullptr then
9: OpenList.remove(BestNode.Pos)

10: if BestNode.Pos == End.Pos then
11: Path.append(End.Pos) ▷ Add end posi-

tion to path
12: break ▷ Path found, exit loop
13: Path.append(BestNode.Pos) ▷ Add best

node position to path
14: CurrNode← BestNode ▷ Update selected

node
15: else
16: if CurrNode is not an edge node then
17: currPoint← CurrNode.Pos
18: OpenList.add(PrevNode.Pos)
19: Path.remove(PrevNode.Pos)
20: PossiblePaths ←

All possible nodes around currPoint
21: for i← 0 to PossiblePaths.Num do
22: point← PossiblePaths[i]
23: if (point ̸= currPoint) and point

is not in Path then
24: if OpenList does not contain point

then
25: OpenList.add(point, graph[point])
26: OpenList[point].hasV isited←

false
27: CurrNode← PrevNode
28: PrevNode← graph[Path[Path.Num−

1]]
29: break ▷ Exit loop on failure
30: return Path ▷ Return the path



Algorithm 4 Get Best Neighbor Dijkstra-Time
1: procedure GETBESTNEIGHBOR(node, size, nodes)
2: MinX ← node.Pos.X
3: MaxX ← node.Pos.X + 1
4: MinY ← node.Pos.Y − 1
5: MaxY ← node.Pos.Y + 1
6: MaxZ ← node.Pos.Z + 2
7: BestNode← nullptr
8: if node.Pos.X < 0 or node.Pos.X ≥ size or

node.Pos.Y < 0 or node.Pos.Y ≥ size or
node.Pos.Z < 0 or node.Pos.Z ≥ size then

9: return NULL
10: for x←MinX to MaxX do
11: if x ≥ 0 then
12: for y ←MinY to MaxY do
13: if y ≥ 0 then
14: point← FV ector2D(x, y)
15: if point ̸= FV ector2D{node.Pos}

then
16: if nodes.Contains(point) then
17: if nodes[point].Pos.Z ≤

MaxZ and
not nodes[point].hasV isited

then
18: nodes[point].cost ←

COST(node, nodes[point])
19: if BestNode == nullptr

then
20: nodes[point].hasV isited←

true
21: BestNode←

nodes[point]
22: else if nodes[point].cost ≤

BestNode.cost then
23: nodes[point].hasV isited←

true
24: BestNode←

nodes[point]
25: return BestNode ▷ Return the best node

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Unreal Engine 5 Environment

For the voxel-based environment, we create a grid of nodes,
with each node containing, x, y, and z coordinate information
along with a randomly determined speed that ranges from
0.5 voxels per millisecond to 3.0 voxels per millisecond. For
consistency, traversal time is calculated by adding up the
individual speeds of the nodes involved in a given path, along
with the height difference factor, multiplied by the individual
edge distances for all algorithms. This grid is represented in
code as a map, where

[ x
y

]
is the key and each node is a

value. This map is used for analyzing the environment and
finding the most optimal path. Each node object contains a
vector containing position data,

[ x
y
z

]
, and a function to return

the randomly determined speed, s(n).

The environment is developed using Unreal Engine 5, one
of the most commonly used 3D game engines featuring
procedural mesh generation, allowing for randomly generated
environments [26]. Unreal Engine 5, being a game engine, is
commonly used for creating video games, but its technologies
have been applied to other purposes, such as cinema and, in
the case of this study, simulation [9]. The actual environment
is generated randomly using the FastNoiseGenerator plug-in,
using a Perlin noise map. The Perlin noise map is a noise
function that can generate more natural gradients, making it
useful for terrain generation [23]. The purpose of Perlin noise
within this study is to make sure that the generated terrain is
realistic, allowing for the most effective algorithms to be used
within the real world. This of course means that the generated
terrain is not truly random, instead simulating realistic terrain.
An example of this can be seen in Fig. 2.

Furthermore, this study uses quintic interpolation to
smoothen out noise values in an attempt to maintain realistic
terrain. Within these calculations, both Euclidean and Man-
hattan distance functions are considered within cellular noise
calculations to create curved cell boundaries, but the Euclidean
distance function is selected as the distance is being calculated
via two distinct points, to find the shortest and most direct
path [15]. The noise generator uses the following parameters
for all instances of terrain generation: 0.15f for frequency,
5 octaves, 5.0f lacunarity, 0.5 gain, and 0.45f cellular jitter.
All tests are performed on an ASUS ROG Strix G15 2022
Gaming Laptop, using an AMD Ryzen 7 6800H processor,
NVIDIA GeForce RTX 3050 graphics card, and 16 gigabytes
of DDR5 RAM. Due to the extensive computational power
required to generate environments, the 512 and 1024 grid-size
environments are tested on an Amazon EC2 G4dn Extra Large
Windows instance, using an NVIDIA T4 GPU, 16 GB RAM,
and 4 vCPUs.

Due to the limited access to computational resources, in
this study, we generate each environment as a 16 × 16
times 16 voxel space. Within each trial, the agent is required
to find a path from the bottom-left corner to the top-right
corner of this space, represented by the coordinates

[
0
0

]
and[

16
16

]
respectively. Such trials would be repeated for 32 x

32 x 16, 36 x 36 x 16, 64 x 64 x 16, 250 x 250 x 16,
252 x 252 x 16, 512 x 512 x 16, and 1024 x 1024 x 16
spaces. In total, 100 environments are generated per grid size,
and each algorithm makes one attempt to pathfind through
each environment. The standard environment height of 16 is
selected to complement the selection of the constant 2 as the
maximum height difference between nodes.

First, using Unreal Engine 5 and the FastNoiseGenerator
plug-in, the environment is generated at runtime, where each
algorithm computes a path from a random point A to a random
point B on the terrain. This environment is represented as a
map, where a 2-dimensional vector is the key value, used to
locate the node at a specific location in the environment. This
map would be accessed by the algorithm to pathfind through
the environment. The time taken to compute, time taken to
traverse, path size, and total path cost are all measured and



Fig. 2. Environment development in Unreal Engine 5. This figure illustrates an example of the environment the algorithms would be pathfinding on. The
environment shown specifically is a 16 x 16 x 16 voxel space, with terrain generated by the Perlin noise algorithm [23]. On the sidebar are buttons used to
automate the data collection process.

recorded in an Unreal Engine 5 DataTable, and then exported
to a Comma-Separated-Value (CSV) file.

Python is a popular programming language used often
with tools such as Pandas, Matplotlib, and Seaborn for data
analysis. Pandas allows for CSV files to be read for data
analysis and Matplotlib and Seaborn are used to generate
graphs. The CSV file–containing computational time, traversal
time, path length, and total path cost–exported from the Unreal
Engine 5 DataTable is read into a Pandas Dataframe for data
analysis. Using Pandas, we then take each metric’s mean
and standard deviation for each algorithm and compare them.
Such values are calculated for each environment size and then
plotted using Matplotlib and Seaborn for ease of comparison.
The algorithm that takes the least amount of time on average
to traverse is considered the most effective algorithm. We also
look into possible outliers within the data to consider in our
conclusions.

B. Results

The trial data are used to generate graphs that plot the
mean and standard deviation of the recorded metrics against
environment size. All algorithms tested are plotted in the same
graph for ease of comparison. The horizontal axis represents
the environment size, which is the number of voxels on each
side of the environment. The vertical axis represents the mean
and standard deviation of the recorded metrics: Time taken,
time calculated, path size, and total cost. For data analysis,
outliers are eliminated, which for our study represent data
beyond the 95th percentile and data below the 5th percentile.
From the data, it is evident that while our adaptation of the A*

algorithm takes more time to compute a path, the individual
paths generated optimize for time performance better than
any other algorithm tested. It is also clear that all algorithms
struggle to perform on a 1024 x 1024 environment size.

Fig. 3. Time taken by each algorithm

1) Execution Time: Fig. 3 shows the mean execution time
taken by each algorithm across different problem sizes. Re-
garding execution time, Time* takes longer to compute a
path than A* but performs better than Dijkstra and Dijkstra-
Time. On the other hand, the standard deviation for Time*
is generally lower than both Dijkstra algorithms. This could
have occurred due to Time*’s additional speed considerations
and the fact that A* uses an optimized heuristic to compute a
path. A* has the shortest execution time, due to its optimized
heuristic function.

2) Traversal Time: Fig. 4 shows the mean traversal time
by each algorithm across different problem sizes. In terms of
traversal time, Time* proves to be more effective than any of
the other algorithms tested. Time* consistently achieves the
lowest mean traversal time through the different environment



Fig. 4. Time to traverse taken by each algorithm on each environment scale.

scales, proving that our heuristic function with speed consider-
ation effectively optimizes paths for traversal time. A* is close
behind Time*, with the Dijkstra-based algorithms following
suit. Interestingly, the Dijkstra-Time algorithm performs worse
than the original Dijkstra’s algorithm in all of the other metrics
tested, whereas it accomplishes optimizing the traversal time
of the path much better. This could likely be attributed to
the additional computational cost of considering the randomly
determined speed within the environment, resulting in longer
computation times and longer paths.

Fig. 5. Number of nodes traversed by each environment and algorithm.

3) Path Size: Fig. 5 shows the mean path size by each
algorithm across different problem sizes. Regarding path size,
Time* is not able to have the shortest path, which is accom-
plished by A*, but this is likely due to the additional speed
consideration. This consideration causes a path that is not
necessarily the shortest in distance, but the quickest to traverse.
The Dijkstra-based algorithms both consistently end up in the
last place across all of the metrics measured, likely due to
their non-optimized cost function. Dijkstra-Time also has the
greatest standard deviation, showing the lack of scalability
throughout the various environments and different scales of
environments. This further exemplifies the effectiveness of A*-
based solutions compared to Dijkstra-based solutions.

4) Traversal Cost: Fig. 6 shows the mean traversal cost by
each algorithm across different problem sizes. When looking
at path cost, it is difficult to fairly compare the Dijkstra-based
and A*-based algorithms against each other as both types
of algorithms calculate cost differently. Understanding this
limitation, we can conclude based on the data that the speed
considerations added onto these algorithms allow for decreased
path cost, indicating that the resulting paths successfully
optimize all of their goal metrics, which for this study are
distance and time, with a greater focus on time.

Fig. 6. Costs of each algorithm on each environment scale.

C. Analysis

From the data collected, it is clear that Time* can accom-
plish its goal of finding the quickest path between two points.
There needs further analysis specifically for grid sizes greater
than 500 as from the data all algorithms seem to perform worse
on those environment scales. Furthermore, these environments
need to be tested on much larger scales, such as 1500 x 1500.

VI. DISCUSSION

In the experiments, we investigate the performance metrics
of various algorithms on different environment sizes. Our trial
data allow for the generation of graphs illustrating the mean
and standard deviation of recorded metrics including compu-
tational time, traversal time, total path cost, and path size.
Conveniently, all algorithms are plotted on the same graph
for ease of comparison. From the 800 simulations conducted,
it is clear that Time* performs much better than its parent
algorithm, A*. It also performs much better than Dijkstra’s
algorithm and better than Dijkstra-Time. It is also clear that
our heuristic function effectively optimizes for traversal time,
compared with other algorithms, allowing it to perform far
more effectively.

A. Computational Time

The Time* algorithm exhibits longer execution times com-
pared with the actual A* algorithm. This is indicative of the
additional time complexity required to handle the random
speed component of the environment at hand. Both Dijkstra-
Time and Dijkstra’s algorithm have much longer execution
time. This is likely due to Dijkstra’s lack of a heuristic function
to optimize paths, leading to additional computation to find
a path. The Time* algorithm does, however, have a lower
traversal time than all of the other algorithms.

B. Traversal Time

The area that Time* is the strongest in is traversal time. This
metric indicates that sacrificing some computational speed
can result in more effective outcomes. A*, which has a
faster execution time, could not compute an efficient path
and Dijkstra’s algorithm could not come close to either A*
algorithm. This suggests that heuristic functions can provide
significant advantages in execution speed while staying ef-
ficient. Interestingly, Dijkstra-Time comes in second, with
traversal time better than the original A* algorithm, indicating



that while the algorithm may not be computationally efficient,
it can compute efficient paths.

C. Path Size

Looking at the path size, A* is consistently able to optimize
for the shortest path, which is consistent with its execution
time performance. Comparatively, Time* has a longer path size
but, consistent with other metrics, can build a more efficient
path than all other algorithms, as indicated by its ability to
optimize traversal time. Understandably, the shortest path by
distance is not the quickest to traverse. Interestingly, the time-
based Dijkstra algorithm has the longest sizes even though it
could not develop the most efficient path, likely due to the
lack of a heuristic function. This infers that within 3D voxel
spaces, A* and its derivatives may be the most computationally
effective, but if we consider the random speed component of
our environment, both Time* and Dijkstra-Time can compute
efficient paths. Again, likely due to the heuristic function,
Time* can compute paths in less time than Dijkstra-Time.

D. Standard Deviation

Across all metrics, Time* is able to effectively minimize
the standard deviation better than A* and both Dijkstra-based
algorithms. This indicates that Time* can maintain consistent
performance across trials as opposed to the other algorithms
tested. This may be because the calculations involving the
Time* cost function went far more in-depth, considering
the height differences and average speeds between nodes,
resulting in numerous factors holding the calculations into
place. Given so many factors influencing the algorithmic
performance, small changes to any given factor would not
result in significant variance from the mean, indicating a low
standard deviation. Another interesting note about the data is
that the standard deviation seems to increase as environment
size increases, indicating that the types of effective paths vary
more significantly at greater sizes.

E. Implications

From the results of this study, it is clear that there are appli-
cations for speed-based pathfinding algorithms that optimize
for time and distance. Previous studies have focused primarily
on distance-based path optimization without significant con-
sideration for time. In practical applications, such as video
games [21], speed plays an important role in determining the
feasibility of a given path. The shortest path is not necessarily
the quickest path to traverse. This study has also shown
the effectiveness of heuristic algorithms, specifically the A*
algorithm, within 3D voxel spaces, indicating that further
research into such algorithms would prove beneficial in finding
the fastest path. Currently, further research is expanding such
algorithms into the field of autonomous vehicles, where the A*
algorithm acts as a base for more complex algorithms [25].
Such applications would still benefit from speed compensa-
tion algorithms, like the one presented in this study. Ideally,
future studies should emphasize optimizing other algorithms
with speed compensation in situations where speed may vary

significantly, requiring an additional consideration of speed to
find a path that can efficiently traverse a given environment.

VII. CONCLUSION

We have shown the pathfinding capabilities of four algo-
rithms, A*, Dijkstra, Time*, and Dijkstra-Time. These algo-
rithms were tested in a 3D voxel-based environment, on which
speed was randomly determined. Each node in this environ-
ment would have a random speed associated with it, which
was assigned during terrain generation. This information was
used by the four algorithms to calculate the most efficient path
as determined by their individual cost functions. We primarily
evaluated the efficiency of their resulting paths by measuring
the time it took to traverse them.

From our trials, it became apparent that Time* proved most
effective in terms of optimizing traversal time, while sacrific-
ing computational speed and path length. As a by-product of
this study, we have also been able to show the effectiveness of
heuristic-based algorithms, such as A* and Time*, within 3D
voxel-based environments. As such, we hope that future re-
search will expand the use of time-based heuristics, as seen in
Time*, into other research areas, such as autonomous vehicles.
Beyond this, the importance of heuristics within pathfinding
should be explored in combination with newer technologies
such as deep learning and neural networks. Research within
this specific area is able to amplify pathfinding success by
using deep learning to analyze various possible paths [22]
or by using imitation learning to simplify computations [17].
Further research can also explore the importance of speed and
traversal time as metrics for evaluation within the overall field
of pathfinding and also explore other representations of real-
world environments beyond just voxel-based ones. Researchers
planning on expanding upon this study in-specific should strive
to adapt the algorithms presented to other environments and
test on much larger scales than those presented in this study.

In summary, this study has shown the effectiveness of
heuristic-based pathfinding algorithms along with the appli-
cation of time-based heuristics within this field. As such, we
have also proven the effectiveness of Time*, for environments
in which speed is randomly determined. This study has also
illustrated the utility of 3D voxel-based environments and their
applications within the field of pathfinding. It is clear that
opportunity for further research exists via various avenues,
as mentioned above, and such opportunities would prove
beneficial for the field of pathfinding as a whole.
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